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The paper describes UI investigmtion of the conditions of existence of the mteady etate 
periodic md rotational motiona in a qoesi.conservative symtetn with one degree of freedom 
We formulate the wffident conditione for the eximteece of a unique molution to a perturbed 
squetion mimilu to the parent equation. Such conditione were obtained eerlier for Ieee gen- 
erel clumem of eqnatiom. 

1. Shtement of the problem. We cooeider nonlinear rymtems dcecdbed by eq- 
umtiono of the type 

t” + Q (I) = eq (t, E, z’, 27, ir; ef (Zi = tft--Thl~l<+4(~.~) 

whom I > 0 im a mmmll permmeter, t E t-m, oo) is en independent real veriable. xnd Tie a 
conrtant. We mhall consider not only the barn&, or perturbed equation, but aleo a degenerate 
form of (l.l), which is 

za” + Q (*a) = 0 (W 
and henceforth we mhmll ammeme that two-puametsr fsniliem of ~olations of (1.2) are given, 
which are either periodic x0 I +($, 0) or rotational 

* =* + HP* a) 0.3) 
mud where r$ im a periodic function of t with t&e psdod To = Bff/o, $ = o(& - to + 8)‘ 6 is 
ao &kruy phue conmtmnt, o I o(B) im the frequency of thb unperturbed periodic or rota- 
donJ motion and E is the 5rst integral of the onperturbed myetero [l to 61. 

It is well known, that the period of mn enperturbed motion depandm ot11y on & end in the 
caoe of om&ll8tion8 it im 

aJ 
a2 

T@(E)=2s ,‘z [E- u (2)] &9=$Q Wx), 
ol 

where ox(E) mnd a,(E) mre dmple reel roots of Eq. 

B- U(t) =o (arc03 

We shall amaume the l imple8t cue [!& 
For the xntatia the eqmssion for the period im momewhmt mfmpler 

x14 



Steady-atate periodic and rotational motions in nonlinsot ryatema 115 

where 2n is the period of Q in X. It was proved in [S] that the eolntion of (I.21 will be ro- 
rational and of the type (1.3). provided that the function Q is periodic in 1~. that its mean 
value is zero end that E > max U. when investigating the rotations in l perturbed system 
we shonld assume, that the function q is also periodic in x snd xF with the periods sqnal 
to 2n or 2njn where n is an integer. In the oscillatory case the above assumptions need 
not be made. In both cases we assume that q is periodic with the period n = const and, that 
it is continuous in its argument t appearing in it explicitly. Assumptions concerning the 

mnoothness of Q and q with respect to the remaining argumenb, will’be made later. 
We shell also introduce the following assertion. The T-periodic solution of (1.1) will be 

of the resonant type m/n if the following equalities hold: T = mn JL nTO. We should note 

that the letter relation defines the constant E. 

We shell consider the resonant, steady-state periodic or rotational solutions of (1.1) for 

t E(--, 4 and below we investigate the conditions which are necessary for those mot- 
ions to take place in the system. An analogous statement was employed by e large nnmber 
of authors 17 and S] (also see the bibliography in [71) studying periodic solutions of qnasi- 
linear systems with a deviating argument. 

Nonlinear systems of bhe general type with time delay were studied in [9] for the parti- 
cular case of an isolated gsnereting periodic solution. 

We should note that (1.1) can, be reduced by substitution to 

d-E I dt = sf (t, E, .E,,7p, 4,: e), Crg I dt = o (Et E,) + &’ (t. E, E,. ‘$1 9,; 8) 

in which f and F are !&-periodic in the rotating phases 4 snd $T and n-periodic in (. Auto- 
nomous system of the similar type with slowly varying parsmeters, was averaged in a simi- 
lar context over the period of time * l/e [lo]. 

2. Construction of the perturbed solution. We shall use the method of 

consecutive approximations [2]. A ssuming that Q has a sicond derivative in x and that q 
hae first partial derivatives in x, r ‘, z,, x; and & in some vicinity of x0 and x0, xi, +o, 

c+, and 0, respectively, which satisfy the Lipshits conditions and contain constants indr 

pendent of t, we make the substitution x = z. + ey where y is an unknown periodic function 

This yields the following quasi-Iinear equation for y 

I” -t- 0' (5) Y = q (C %. 20'~ 2v,o, 2,,o'; 0) + eY V, I, Y', y+, ar,'; e) (24 

in which 

y (4 Y, Y', Yt, Y,'i 8) = - ~Qo*Y~+(~),Y+(~)~Y*+ 

+ (2-)oYr+ (&joy; 4- @),+ Y* (f.?/tY', YT, y;; 8) 

and Y+ (t, y, y *, yn y7*; 0) z 0. We shell now construct a scheme of consecutive approxima- 

tioas in s in order to obtain e periodic solution of (2.1). We shall obtain the zero approxi- 

metibn fory, assuming it to be a periodic solution of (2.1) et ‘t = 0. 

I/o” + Q’ (2.1 Yo = PO @S 6 20.9 ‘zio. %o’) 

It is an ordinary linear inhomogeneous equation whose coefficients and the right-hand 
side are both periodic. Its integration presents no problems, since the basic metbod of sol- 
ution of the corresponding homogeneoas Eq. 

yo,1 Es u = zo’, YO,l =ut$-v ( c=” @2o(g, =N 
a0 1 

where u and v are periodic functions, is well known. Using the method of variation of the 
constants of integration [2 and 31 we obtain 
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qou dh - vqo - Ba)dtr+v(~qoudtl-~)]+9ur 

tr 
=A(:, qO]+aOu~~*faou (D=l,‘A (t)=i/(d+d-vu*)) 

where At(t) ia a Wronskian which ir constant by the Lioaville’s tbcorem, ho and .& ate 

constants of integration and L is an operator linear in qo. 
It should be noted that the function yo will be T-periodic at any c+,~ provided tbat the 

real constant 8 natisfiss Eq. 

T 

Pff+~qotJdt=O f?.2) 
a 

and, that we put 

I30 

i 
= 

?F- (j 
3 

qou dtt - vqo 
1 

dt 

* 

Equation (2.2) defines the phase constant 8. 
Next approximation fory is given by 

Yt” + Oo’n = 20 + ey (6 YO? io9 YI# li,,o’; 0) 

which, similarly to the previous one, has a solution of the form 

Yi = vo* + f& It, Yol + %@ 

Condition of periodicity of y t, at any a 1, yields under some additional assumptions the 
constant a0 . Taking into account 

T T 
1 

-- 
2 1 Q" (IO) YO’U d: = 1 am dt 

0 IJ 

we C(LII show by direct integration, that the equation defining a0 is linear in a0 and has the 

form 

oo&-f{[(&Yo*+ ($),yi* +(-$)oY,,0*4 

+ (+),%,a’* +(%),I =+wP}dt 
which yields ao by elementary operations, provided of courne that 8 * is a simple, real root 

of (2.2). 
To obtain further approximations for the periodic function y we shall use, in accordance 

with our method, the following Eqe. (where i > 2) 

Yt '+ Qdvi- - qo + ~3 6 Y$+ Y~-~‘. yt, +I’ Y,, t-$ a) (2.3) 

whose aolation ia 

yt = sro* + aL [r, rt-11 + atu (2.4) 

Condition of perfodicity of y, yields, as before, the unknown constant a+,, or in other 

words, the (i - I)-th approximation in e for all L E f- 00, 00) under a single condition that 
these socceesfve approxfmationo converge nniforntly and belong to the domain of deffnftfon 
of the fan&on Y. We should note that the eqastfons dsffnfng &k & > 1) will be not&near 
and of the form 
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$ (z). + YI’] u + w,‘* + 8 (Y,'* + aku’) Yk_l} dt = 0 
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Since (2.5) satisfies all the requirements of the theory of existence of the implicit fund 
tion u,(e), we may be justified in saying, that, for a sufficiently small 1 e( there exista 

a unique solution Uk = CLk (8) of Eq. (2.5) and that ak (0) = CL,. This solution can be COPS- 

tructed using the method of successive approximations according to the scheme 

+ (g), $- yp-1).1 u +qoy’k l + E (y,” + uk(j-lhoYk_l} dt 

(I’= 1, 2, . . .; uk(0)= ao) 

It therefore follows that the proposed scheme allows us to obtain, uniquely, any degree 
of the formal approximation in E to the periodic solution of (2.1) for all L E (-m, 00). 
This can easily be proved using the method of induction. Next we shall prove the validity 
of the scheme (2.3). 

3. Proof of the validity of the scheme of successive approxima- 
tions. We shall use the method developed in [2 and 111. 

First we shall discuss the basic properties of the operator L. L is a linear operator 

satisfying, by virtue of periodicity, the condition 

maxlL [t,F]l<A*B (B>O) (3.1) 

where A = max ( FI , while the constant B is bounded and does not depend on the choice of 
F; moreover, the properties of smoothness of the function in terms of the arguments entering 
F, are not affected. 

We shall further introduce the notation 

Sk = Qk (t, a, e) = YO* +eL [t, Yk+l f au 
T 

Rk:= Rk (s, 8) = 
s 

Y (t, ak, ok’, a,, h, CQ-; e) udt 
0 

with the help of which we can write the equation defining a, as 

R, Jak, 8) =P (3.2) 

We shall first show that when e is sufficiently small, then the ftInCtiOnS yk# yka9 yT,k 

and ys, k ’ belong, for all t E (- m, m), to some bounded region C, provided that U, is sach 
that yo, y. *, yT o and y7,0’ belong to the same region. 
is valid for all k up to (k - 1) 

To prove it we shall assume that it 
inclusive, and then we shall show that when ,e, is snfficient- 

ly small and independent of k, then the boundedness property is also valid fork. From the 

fundamental property (3.1) of the operator L we have, that (L 11, Yk,,] 1 < A- B where A - 
= max I Y1 over the whole domain of definition of Y. Further 

aRk 
1 aa r4, e--r0 

=-g&*0 

But then we can easily deduce from Expression 
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that two positive nnmbera /A and Wt independent of k exist, such tltmt when 

I=-%I<P (3.3) 
and a < WI then the inequality 

l%l~l>Y (3.4) 

where y > 0 is independent of k, holds. We shall aaaame here that b and Q are so amall, 
that (Ok, n&‘r Wv,&k’ t+) E C . 

We shall now assume that when a < t’/t, then the roots a,(s) of (3.2) lie wfthin the re- 
gion (3.3). and we aball show that the magnitude q1 can indeed be chosen small enough to 
ensure that 

1% (a) -%i <P (3.5) 

holds. 
Let now C 3 max IdRJ?fi 1 , assuming that C is independent of k over the whole domain 

of existence of this derivative, and let ua pat ?t C Yp C. Then the inequality (3.5) will cer- 
tainly hold. Indeed, since ~a (0) = ho, the inequality (3.5) by vfktue of continuoualdepen- 
dence will hold at sufficiently amall K Let us now assume the opposite, i.e. that at some 
6 = 80; (3.5) becomes an equality. We shall show that this is possible when ‘a* > hit, as- 
suming initially the opposite, ire. a’* 4 Wt. We can then write 

Ia,(8*)--CLO(=IaL(e*)-uR(0)(= 

where ,ttl is a proper positive fraction. Since cdl (~s*)~ lies within the region (3.9, the 
inequality (3.4) yfelde 

iabfS*)-OCI1Cs*CIO<11Cf~!< 

which contradicts the assumption that (3.5) becsme an equality. Thus we have shown that, 
when the condition s < Wt holde and Wt is chosen as required, all approximations belong 
to G. Now we shall prove that the consecutive approximations (2.4) converge uniformly.y, Let 
as introduce the following differencea 

I bk (8) - ak_l (8) I < bk: I L rc Yk_J -L IL Yk-11 I < Ok 

L’ [t, Y,,- Y,,] I< vk: 1 L, [t, yk_l- ykdl I< @K’; ii&’ Et* y-k-,yk,l 1 <‘k’ 

where bk a, +, akT and vk7 are some positive constants with upper bounds independent 
of k. Let ck be the largest of +, Q., akr and ok r. Since the function Y satisfies, in C, the 
Lipahita conditions, we have 

i yk - yk, I< ‘%Q (+$ d =k) 

where A denotes the maximum value of the following periodic functions IPI, Iu’I, 1~71, and 
JY ~1, while n ia the Lipahits constant. Tahing into account the above inequality we find 

w it* yk - yk-tl I< ‘k+l* 1 L’ [ryk - yk-ll/ < ck+l* i L, It, yk - yk-ll I< ck+l 

1 L,’ [t. yk - yk-11 i < ck+l (ck+l = ilJIB,l”k -b mk)) 

Let na now obtain an estimate for the difference a,+, (s) - ak (6). We begin by cottai- 
de&g the following anxtlliary Eq.: 

where 

(3.3) 
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We dmilarly define the fnnctions [ ; +$ I 6’F a/td ep: Obviously, 7@” < W,) can be cho- 
sen urfficiently small to ansnre that ( k, *, T,k, r,k? (5 G, if 

IB-aol<v (3.7) 

where v is positive ad snfficfently small. We can then assume that the hnction @ fo tally 
defined. We ahall now lhow that when 712 ie anfficiutly small, then the inepaality )8h - 1 
-uJ <vwhere&(I).,Sl ia a root of (3.61, holds for any k. Indeed we have 

t~~f~,~)--a,f<~++t~fs,~)--~11(8,O)f 

We can obtain p <V by choosing a sufficiently small Wt. We have then v -p = A > 0. We 
ahall fdrther chow tllat I&( %, 6) - flk( 8, 0) 1 < A provided that W2 is snfficiently unall. 
Putting 

~r<aA/ M (M= maxIaa)&%I; O<a,<mi/*) 

where none of the magnitudes depend on k we obtain, in analogy to the previous case, tha 
reqnired assertion. Now we can estimate the difference ~,+,(:a) - ~,(:a), noting that ak+l 
(6) I &( 8, e 1 and that c$$sl= @,(a , 01. We obtain 

I~~+,(~~--Qn(~)l=lB~(s,~)-Pk(~.~)I=s 1 “J$!; *) brnx* =a l%(!$tj-lI 

inwhichfl=pk( e,x e),6= 
a 

~~8 and 0 < Xp < 1. Let us ROW estimate @@k/88. Differ- 
entiating @h we find, at in the region (3.7) and when 8 < v2, we have 

1 a@, / 138 I < ~T~IYc~,~ =_ WC,,, 

where H is the largest of the upper bounds of aY/+, aY/+ ; dY/ay, and dY/ayv’in their 
domain of existence. 

Collecting the estimates we now obtain 

I aI.+1 (8) - ak. (8) I < bkel (%+I = eWck+r / 0) 

from which it follows that the ratio bh+t/Ck+t = eW/w and is independent of k. Come- 

que~tly we can infer that the ratio b, /ck is also independent of k. But them the ratios 

%+t 14, and oh+! /oh are also independent of k, since 

b k+1 W %+1 
-q--e -yb,=4&2B o 

Aa bJcli is proportional to ‘a, we find that when e is sufficiently small, the ratios 

%+I lc, and bk+,/q, will be lees than unity,.whicb proves that y,(t, s) converges l bso- 
lutely and nniformly. 

Finally we aball show that the limit of this sequence ia a solution of (2.1). Since L md 
Y are smooth, we have 

el; if, Y] = Eii”,L It, Y,._J =jz(yk - aku - ye’) = y ft, 6) -a (e) u -ye* 

Differentiating it G find, by the aniform convergence, that y (t , e ) is a periodic solution 
of (2.1). 

Thus we have coastrncted a nniqne, resonant solution of (1.1) of the form m/n, with PI 
arbitrary constant deviation of its ugnment, for the rotational aad oscillatory canea, in the 
form 

t=z(t,e)=q(~,o)+sp(t.a) i3.8) 

where y is a T-periodic fnnction, and this proves the following theorem. 
T h e o r e m 3.1. When the valaea of the puamcter a ue safficiently uuall, then the 

pertarbed.Eq. (1.11 allowa, in the region of definition and amoothneaa of the fnnctfon Q, a 

unique, m/n, resonunt, oscillatory or rotational solution stationary for all t e f- 00, 00)~ 
which becomes the generating solation x&#,of when 16 -0 aad which hasthe form (3.8) 
provided that: 

1) fnncdona Q and q satisfy the periodicity and amootlmesa condidons listed in Sections 
land2; 
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2) cquedon (2.2) hes e reel root 6* end 
3) the rcletion o ?E l )aP/de* f 0 holds. 
N o t c 3.1. The uniqueness of the solution iu understood in the ~cnne, that for each 

reel rimplc root 0* corrceponding to eomc fixed T, m, n end b, there exfetm one solution 
of the foan (3.8). It is cesily seen thet a given segment of length T, elwqs con&no an 
even number of cuoh root% i.e. 0, 2, 4,.,. . 

N o t c 3.2. Let 8* be tm rtnplc G Cm) nel root, i.e. 

(we naturally asrmme that Q end g ten bc differentiated sufficient number of times), In this 
case the solution mey bc no longer unique in the above senac and we hen approximate the 
exact solution, es a ~lc* in frectionel powers of e. Obviously we can obtain the result 
#/r@* f 0 by ohenging the coneteut Tend aome other peremetcrs, but this cane was shown 
in [2 end 31 to be critical eud acldom met in practice. It should be noted that the critical 
oeacs for aa enaIytic, eutonomoas, quasi-linear equation without e deviating argument were 
investigetcd in [12]. 

N o t c 3.3. Another partfculer case which is more common occurs, when the equation 
(2.2) is setieficd identically, i.e. independently of 8 for the given choice of T end m, n. In 
this cesc we apeek of the higher degree motions. Such oscillatory and rotational motions in 
the systems desoribed by ordfnery cquetioau of the type (Ll), were studied in [3 and 131. 

N o t e 3.4. The ceac o ‘(E * ) = 0 requires a separate investigation. 

4. Example. To illustrate the method, we shell consider the following reel syetcm 
deeoribcd by e ‘pendulum equation 

x” + e* gin x = e [A’ sinvt + bz’(t - 2) - &z’ -a sgn 2.1 (a’, N, b, p, a = const > 0) 

wbosc gcncreting solution has, in the rotational case (if E > 2a*) the form 

zo=2am[fm(t+6), a Jf23]=$+4 t -!---!?I-- sinp* 
11=1 P I + gap 

* = 0) (E) v + e). 

. - 

To(E) = 2 WK (u f/z/s,. 
nR’ 

Q = @xF +) 

Hare om is en elliptic emplitudc, X donotcs e complex elliptic integral of the first kind 
end K’dcnotce its derivative [14]. We ehall for simplicity limit ouroclves to the principal 
re~~onencc w(E) = u. After a cembcrsomc integration we obtain the following condition for 
the pheac equilibrium 

~(@)=+&$3&3v6+16v g qap 
p =I 0 + Pap)* 

(bdosplrt-BP) + 

+2v(b-j3)-2a]s-$(-l~sinvO+~)=0 

which hes simple reel roote on the segment [O, ZR/V]: 8, P WV) arc ein 6 and 8, P W/V - 
- 8 (s - y/N) (q + I/q)) provided thet 8 < 1. When y = Nq/(l + q*), we cecily find that 
i&/b L 0. If on the other hard 6 < 1, then the bedc resonant rotetion cennot take plecc 
ricer e = 0. Thus, if y < Nq/(l + q*), then by our thcorcm there cxiats e bemic resonant 
l olndon of the pcrtnrbcd equation. Further deductions ceu be made without any fnndementel 
difficahice, odng the formulaa of Section 2. 
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